d01 — Quadrature Introduction — d01

2.1.

Chapter d01 — Quadrature

Scope of the Chapter

This chapter provides routines for the numerical evaluation of definite integrals in one or more
dimensions.

Background

The routines in this chapter are designed to estimate:

(a) the value of a one-dimensional integral of the form

Kﬂmw (1)

where f(x) is defined by the user, either at a set of points (z,, f(z;)), for ¢ = 1,2, ...,n where
a=1z, <y <..<z, =Db, orin the form of a function; and the limits of integration a, b may
be finite or infinite.

Some methods are specially designed for integrands of the form

fx) = w(z)g(x) (2)

which contain a weight function w(x) of a specific form. These methods take full account of
any particular behaviour attributable to the w(z) factor.

(b) the value of a multi-dimensional definite integral of the form

/ f(xy, 2y, .yz,) da,...deydy (3)
Ry

where f(z,,2,,...,z,) is a function defined by the user and R,, is some region of n-dimensional
space. The simplest form of R,, is the n-rectangle defined by

a; <z, <b,, 1=1,2,...n 4)
where a; and b; are constants. When a, and b; are functions of z; (j < i) the region can easily
be transformed to the rectangular form (see Davis and Rabinowitz (1975)).
One-dimensional Integrals

To estimate the value of a one-dimensional integral, a quadrature rule uses an approximation in
the form of a weighted sum of integrand values, i.e.,

b N
| @) =3 wsw),)

where z; and w, are the abscissae and the weights of the quadrature rule respectively.
More generally, if the integrand has the form (2), the corresponding formula becomes

b N
/ w(x)g(z) dr ~ Zwig(aci). (6)

If the integrand is known only at a fixed set of points, these points must be used as the abscissae,
and the weighted sum is calculated using finite-difference methods. However, if the functional
form of the integrand is known, so that its value can easily be evaluated at any abscissae, then a
wide variety of quadrature rules are available, each characterised by its choice of abscissae and the
corresponding weights.

[NP3275/5/pdf] 3.intro-d01. 1

Introduction — d01 NAG C Library Manual

2.2,

The choice of an appropriate rule depends on the interval [a,b] — whether finite, infinite or semi-
infinite — and the form of any w(z) factor. A suitable value of N depends on the behaviour of f(x);
or of g(z), if there is a w(x) factor present.

Among possible rules, we mention particularly the Gaussian formulae, which employ a distribution
of abscissae which is optimal for f(z) or g(x) of polynomial form.

Generally, quadrature algorithms are divided into two catagories; automatic and non-automatic; the
latter is sometimes referred to as the single rule evalution algorithm. In a non-automatic algorithm,
a fixed number of abscissae, N, is used. This number and the particular rule chosen uniquely
determine the weights and abscissae. No estimate is made of the accuracy of the result. However,
in an automatic algorithm, the number of abscissae, N, within [a,b] is gradually increased until
consistency is achieved to within a level of accuracy (absolute or relative) requested by the user.
There are essentially two ways of doing this, non-adaptive or adaptive; hybrid forms of these two
methods are also possible.

(i) Non-adaptive algorithms
A series of rules using increasing values of NV are successively applied over the whole interval
[a,b]. Tt is clearly more economical if abscissae already used for a lower value of N can be used
again as part of a higher-order formula. This principle is known as optimal extension. There is
no overlap between the abscissae used in Gaussian formulae of different orders. However, the
Kronrod formulae are designed to give an optimal (2N — 1)-point formula by adding (N + 1)
points to an N-point Gauss formula. Further extensions have been developed by Patterson.

(ii) Adaptive algorithms

The interval [a, b] is repeatedly divided into a number of sub-intervals, and integration rules
are applied separately to each sub-interval. Typically, the subdivision process will be carried
further in the neighbourhood of a sharp peak in the integrand, than where the curve is smooth.
Thus, the distribution of abscissae is adapted to the shape of the integrand.

Subdivision raises the problem of what constitutes an acceptable accuracy in each sub-interval.
The usual global acceptability criterion demands that the sum of the absolute values of the
error estimates in the sub-intervals should meet the conditions required of the error over the
whole interval. Automatic extrapolation over several levels of subdivision may eliminate the
effects of some types of singularities.

An ideal general-purpose method would be an automatic method which could be used for a wide
variety of integrands, was efficient (i.e., required the use of as few abscissae as possible), and
was reliable (i.e., always gave results within the requested accuracy). Complete reliability is
unobtainable, and generally higher reliability is obtained at the expense of efficiency, and vice
versa. It must therefore be emphasised that the automatic routines in this chapter cannot be
assumed to be 100% reliable. In general, however, the reliability is very high.

Multi-dimensional Integrals

A distinction must be made between cases of moderately low dimensionality (say, up to 4 or 5
dimensions), and those of higher dimensionality. Where the number of dimensions is limited, a
one-dimensional method may be applied to each dimension, according to some suitable strategy,
and high accuracy may be obtainable (using product rules). However, the number of integrand
evaluations rises very rapidly with the number of dimensions, so that the accuracy obtainable with
an acceptable amount of computational labour is limited; for example a product of 3-point rules in
20 dimensions would require more than 10° integrand evaluations. Special techniques such as the
Monte Carlo, number theoretic and Sag-Szekeres methods can be used to deal with high dimensions
(see Davis and Rabinowitz (1975)).

(a) Products of one-dimensional rules
Using a two-dimensional integral as an example, we have

b2

by b2 N
L[s dy e Su(f sena) 7)

by bo
/ f(z,y) dy dx~22w (21,9;) (8)

i=1 j=1

3.intro-d01.2 [NP3275/5/pdf]

d01 — Quadrature Introduction — d01

4.1.

where (w,,z;) and (v,;,y;) are the weights and abscissae of the rules used in the respective
dimensions.

A different one-dimensional rule may be used for each dimension, as appropriate to the range
and any weight function present, and a different strategy may be used, as appropriate to the
integrand behaviour as a function of each independent variable.

For a rule-evaluation strategy in all dimensions, the formula (8) is applied in a straightforward
manner. For automatic strategies (i.e., attempting to attain a requested accuracy), there is
a problem in deciding what accuracy must be requested in the inner integral(s). Reference
to formula (7) shows that the presence of a limited but random error in the y-integration for
different values of x; can produce a ‘jagged’ function of x, which may be difficult to integrate
to the desired accuracy and for this reason products of automatic one-dimensional routines
should be used with caution (see also Lyness (1983)).

(b) Monte Carlo methods
These are based on estimating the mean value of the integrand sampled at points chosen
from an appropriate statistical distribution function. Usually a variance reducing procedure is
incorporated to combat the fundamentally slow rate of convergence of the rudimentary form of
the technique. These methods can be effective by comparison with alternative methods when
the integrand contains singularities or is erratic in some way, but they are of quite limited
accuracy.

(¢) Automatic adaptive procedures

An automatic adaptive strategy in several dimensions normally involves division of the region
into subregions, concentrating the divisions in those parts of the region where the integrand
is worst behaved. It is difficult to arrange with any generality for variable limits in the inner
integral(s). For this reason, some methods use a region where all the limits are constants;
this is called a hyper-rectangle. Integrals over regions defined by variable or infinite limits
may be handled by transformation to a hyper-rectangle. Integrals over regions so irregular
that such a transformation is not feasible may be handled by surrounding the region by an
appropriate hyper-rectangle and defining the integrand to be zero outside the desired region.
Such a technique should always be followed by a Monte Carlo method for integration.

The method used locally in each subregion produced by the adaptive subdivision process is
usually one of three types: Monte Carlo, number theoretic or deterministic. Deterministic
methods are usually the most rapidly convergent but are often expensive to use for high
dimensionality and not as robust as the other techniques.

References

Davis P J and Rabinowitz P (1975) Methods of Numerical Integration Academic Press.

Lyness J N (1983) When not to use an automatic quadrature routine? SIAM Review 25 63-87.

Piessens R, De Doncker-Kapenga E, Uberhuber C and Kahaner D K (1983) QUADPACK, A
Subroutine Package for Automatic Integration Springer-Verlag.

Sobol I M (1974) The Monte Carlo Method The University of Chicago Press.

Stroud A H (1971) Approzimate Calculation of Multiple Integrals Prentice-Hall.

Recommendations on Choice and Use of Available Routines

The following three sub-sections consider in turn routines for: one-dimensional integrals over a
finite interval, and over a semi-finite or an infinite interval; and multi-dimensional integrals.

One-dimensional Integral over a Finite Interval

(a) If f(x) is defined numerically at four or more points, then the Gill-Miller finite difference
method, nag_1d_quad_vals (d0lgac) should be used. The interval of integration is taken to
coincide with the range of x-values of the points supplied. It is in the nature of this problem
that any routine may be unreliable. In order to check results independently and so as to
provide an alternative technique the user may fit the integrand with a cubic spline to the data
using nag-_ld_spline_fit_knots (e02bac) and then evaluate its integral using nag_ld_spline_intg
(e02bdc).

[NP3275/5/pdf] 3.intro-d01.3

Introduction — d01 NAG C Library Manual

(b)

Integrand defined as a function

If the functional form of f(x) is known, then one of the following approaches should be taken.
They are arranged in the order from most specific to most general, hence the first applicable
procedure in the list will be the most efficient. However, if the user does not wish to make any
assumptions about the integrand, the most reliable routines to use will be nag_1d_quad_gen_1
(d01sjc), although it will in general be less efficient for simple integrals.

(i) Rule-evaluation routines
If f(x) is known to be sufficiently well-behaved (more precisely, can be closely
approximated by a polynomial of moderate degree), nag_1d_quad_gauss_1 (d01tac) (which
is based on a family of interlacing Gaussian quadrature) may be used.
nag-ld_quad_gauss_1 (d01tac) may also be used if it is not required to examine the weights
and abscissae.

(ii) Automatic adaptive routines
Firstly, several routines are available for integrands of the form w(z)g(x) where g(z) is
a ‘smooth’ function (i.e., has no singularities, sharp peaks or violent oscillations in the
interval of integration) and w(x) is a weight function of one of the following forms:
if w(z) = (b— 2)%(z — a)’(log(b — z))*(log(z — a))! where k,l =0 or 1, a, 3 > —1, then
use nag-ld_quad-wt_alglog_1 (d01spc);
if w(z) = 1/(x—c), then use nag_1d_quad_-wt_cauchy_1 (d01sqc) (this integral is called the
Hilbert transform of g(z));
if w(z) = cos(wz) or sin(wx), then use nag 1d_quad_wt_trig_-1 (d01lsnc) (this routine can
also handle certain types of singularities in g(z)).
Secondly, there are some routines for general f(z). If f(z) is known to be free of
singularities, though it may be oscillatory, nag_-1d_quad-osc_1 (d01skc) may be used.
The most powerful of the finite interval integration routines is nag-1d_quad_gen_1 (d01sjc)
(which can cope with singularities of several types). nag ld_quad_gen_1 (d01sjc) is very
reliable, particularly where the integrand has singularities other than at an end-point, or
has discontinuities or cusps, and is therefore recommended where the integrand is known
to be badly-behaved, or where its nature is completely unknown.
Most of the routines in this chapter require the user to supply a function to evaluate the
integrand at a single point.
If f(x) has singularities of certain types, discontinuities or sharp peaks occurring at
known points, the integral should be evaluated separately over each of the subranges
or nag-1d_quad_brkpts_1 (d01slc) may be used.

4.2. One-dimensional Integrals over a Semi-infinite or Infinite Interval

(a)

Integrand defined as a set of points

If f(x) is defined numerically at four or more points, and the portion of the integral lying
outside the range of the points supplied may be neglected, then the Gill-Miller finite difference
method, nag_1d_quad_vals (d01gac), should be used.

Integrand defined as a function

(i) Rule evaluation routines
If f(x) behaves approximately like a polynomial in z, apart from a weight function of the
form:

e P B3>0 (semi-infinite interval, lower limit finite);
e P* 3 <0 (semi-infinite interval, upper limit finite);
e Blz=a)® 350 (infinite interval);

or if f(x) behaves approximately like a polynomial in (z +b)~! (semi-infinite range), then
nag-ld_quad_gauss_1 (dO1tac) may be used.

(ii) Automatic adaptive routines
nag-ld_quad_inf_1 (d01smc) may be used, except for integrands which decay slowly towards
an infinite end-point, and oscillate in sign over the entire interval. For this class, it may
be possible to calculate the integral by integrating between the zeros and invoking some
extrapolation process.

3.intro-d01.4 [NP3275/5/pdf]

d01 — Quadrature Introduction — d01

4.3.

5.1.

5.2.

nag-_ld_quad_inf_wt_trig_1 (dO1lssc) may be used for integrals involving weight functions of
the form cos(wx) and sin(wx) over a semi-infinite interval (lower limit finite).

Multi-dimensional Integrals

At present, there are only two automatic routines available in this area. The algorithms used in
these routines are based on a Monte Carlo method and an adaptive sub-division strategy.
Both routines are for integrals of the form

b1 b2 bn
/ / flzy, zg, ...z, d,,...deyde, .
ai az Qn

nag-multid_quad_monte_carlo_1 (d0lxbc) is an adaptive Monte Carlo routine. This routine is
usually slow and not recommended for high accuracy work. It is a robust routine that can often be
used for low accuracy results with highly irregular integrands or when n is large.
nag-multid_quad_adapt_1 (d0lwcc) is an adaptive deterministic routine. Convergence is fast for
well-behaved integrands. Highly accurate results can often be obtained for n between 2 and 5, using
significantly fewer integrand evaluations than would be required by nag_multid_quad_monte_carlo_1
(d01xbc). The routine will usually work when the integrand is mildly singular and, for n < 10,
should be used before nag_multid_quad_-monte_carlo_1 (d01xbc). If it is known in advance that the
integrand is highly irregular, it is best to compare results using both routines.

There are many problems for which one or both of the routines will require large amounts of
computing time to obtain even moderately accurate results. The amount of computing time is
controlled by the number of integrand evaluations allowed by the user, and users should set this
parameter carefully, with reference to the time available and the accuracy desired.

Available Functions

At Mark 5, we have introduced thread-safe versions of the functions requiring communication
between the calling program and the user-defined function to evaluate the integrand. This has
been implemented by introducing a void * parameter both in the calling sequence of the NAG
function and the user-defined function. Note that the functionality of the thread-safe version is
essentially the same as the corresponding thread-unsafe version. However, it is recommended that
the thread-safe version be used in preference to the thread-unsafe versions, particularly in view of
the fact that the thread-unsafe version may be removed at a later mark of the C Library.

Thread-unsafe functions

1-D quadrature, adaptive, finite interval, allowing for badly-behaved integrands d0lajc
1-D quadrature, adaptive, finite interval, method suitable for oscilating functions d01lakc
1-D quadrature, adaptive, finite interval, allowing for singularities at user-specified

break-points do0lalc
1-D quadrature, adaptive, infinite or semi-infinite interval d0lamc
1-D quadrature, adaptive, finite interval, weight function cos(wz) or sin(wx) dO1lanc
1-D quadrature, adaptive, finite interval, weight function with end-point singularities of
algebraico-logarithmic dOlapc
1-D quadrature, adaptive, finite interval, weight function 1/(z — ¢), Cauchy principal

value (Hilbert transform) d0laqc
1-D quadrature, adaptive, semi-finite interval, weight function cos(wzx) or sin(wx) dO1asc
1-D Guassian quadrature d01bac
Multi-dimensional adaptive quadrature over hyper-rectangle dOifcc
1-D quadrature, integration of function defined by data values, Gill-Miller method d01igac
Multi-dimensional quadrature over hyper-rectangle, Monte Carlo method d01gbc

Thread-safe functions

1-D quadrature, adaptive, finite interval, allowing for badly-behaved integrands dO1sjc
1-D quadrature, adaptive, finite interval, method suitable for oscilating functions d01skc
1-D quadrature, adaptive, finite interval, allowing for singularities at user-specified

break-points d01slc
1-D quadrature, adaptive, infinite or semi-infinite interval d01smc

[NP3275/5/pdf] 3.intro-d01.5

Introduction — d01 NAG C Library Manual

1-D quadrature, adaptive, finite interval, weight function cos(wz) or sin(wx) dO1snc
1-D quadrature, adaptive, finite interval, weight function with end-point singularities of
algebraico-logarithmic dO1spc
1-D quadrature, adaptive, finite interval, weight function 1/(z — ¢), Cauchy principal

value (Hilbert transform) d01sqc
1-D quadrature, adaptive, semi-finite interval, weight function cos(wzx) or sin(wx) dO1ssc
1-D Guassian quadrature d01itac
Multi-dimensional adaptive quadrature over hyper-rectangle dO1wcc
Multi-dimensional quadrature over hyper-rectangle, Monte Carlo method d01xbc

3.intro-d01.6 [NP3275/5/pdf]

	NAG C Library Manual, Mark 8
	Introduction
	Essential Introduction
	Mark 8 News
	Library Contents
	Withdrawn Routines
	Advice on Replacement Calls for Withdrawn/Superseded Routines
	Online Help

	Indexes
	Keywords in Context
	GAMS Classification Index

	Implementation-specific Information
	a00 - Library Identification
	Chapter Introduction

	a02 - Complex Arithmetic
	Chapter Introduction

	c02 - Zeros of Polynomials
	Chapter Introduction

	c05 - Roots of One or More Transcendental Equations
	Chapter Introduction

	c06 - Fourier Transforms
	Chapter Introduction

	d01 - Quadrature
	Chapter Introduction

	d02 - Ordinary Differential Equations
	Chapter Introduction

	d03 - Partial Differential Equations
	Chapter Introduction

	d06 - Mesh Generation
	Chapter Introduction

	e01 - Interpolation
	Chapter Introduction

	e02 - Curve and Surface Fitting
	Chapter Introduction

	e04 - Minimizing or Maximizing a Function
	Chapter Introduction

	f - Linear Algebra
	Chapter Introduction

	f01 - Matrix Factorizations
	Chapter Introduction

	f02 - Eigenvalues and Eigenvectors
	Chapter Introduction

	f03 - Determinants
	Chapter Introduction

	f04 - Simultaneous Linear Equations
	Chapter Introduction

	f06 - Linear Algebra Support Functions
	Chapter Introduction

	f07 - Linear Equations (LAPACK)
	Chapter Introduction

	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	Chapter Introduction

	f11 - Sparse Linear Algebra
	Chapter Introduction

	f12 - Large Scale Eigenproblems
	Chapter Introduction

	f16 - NAG Interface to BLAS
	Chapter Introduction

	g01 - Simple Calculations on Statistical Data
	Chapter Introduction

	g02 - Correlation and Regression Analysis
	Chapter Introduction

	g03 - Multivariate Methods
	Chapter Introduction

	g04 - Analysis of Variance
	Chapter Introduction

	g05 - Random Number Generators
	Chapter Introduction

	g07 - Univariate Estimation
	Chapter Introduction

	g08 - Nonparametric Statistics
	Chapter Introduction

	g10 - Smoothing in Statistics
	Chapter Introduction

	g11 - Contingency Table Analysis
	Chapter Introduction

	g12 - Survival Analysis
	Chapter Introduction

	g13 - Time Series Analysis
	Chapter Introduction

	h - Operations Research
	Chapter Introduction

	m01 - Sorting
	Chapter Introduction

	s - Approximations of Special Functions
	Chapter Introduction

	x01 - Mathematical Constants
	Chapter Introduction

	x02 - Machine Constants
	Chapter Introduction

	x04 - Input/Output Utilities
	Chapter Introduction

